Problem Sets

Published:

Last Update: 2025-10-14

Remark:

  • Per the sequence of the course outline, this set does not yet cover problems related to exponential functions, inverse functions, and logarithms—these will be included in subsequent sets.
  • 根据课程大纲的内容顺序安排,此部分练习暂未涵盖与指数函数、反函数及对数函数相关的题目 —— 这类题目将在后续练习中纳入。

  • (\lim_{x \to \infty} \left(1 - \frac{2}{x}\right)^{x})
  • $\lim_{x \to \infty} \left(1 - \frac{2}{x}\right)^{x}$
  • [\lim_{x \to \infty} \left(1 - \frac{2}{x}\right)^{x}]
  • $\lim_{x \to \infty} \left(1 - \frac{2}{x}\right)^{x}$

  • \(\lim_{x \to \infty} \left(1 - \frac{2}{x}\right)^{x}\)

  • \(\lim_{x \to 0} \dfrac{\int_{\cos x}^{1} e^{-t^{2}} dt}{\sin^{2} x}\)

  • \(\int \sec^{3} x \, dx\)

  • \(\int_{0}^{\pi} \sqrt{\cos^{2} x - \cos^{4} x} \, dx\)

  • \(\int \frac{1}{1 + \sqrt[3]{x + 2}} dx\)

  • \(\int x\sin^{-1} x\,dx\)

  • Suppose that \( x \) and \( y \) satisfy the following equation: \( x = \int_{0}^{y} \frac{1}{\sqrt{1+4t^{2}}} dt\). Show that \( \frac{d^2y}{dx^2} \) is proportional to \( y \) and find the constant of proportionality.