Problem Sets: Derivative: Definition and Calculation (导数的定义和计算)

Published:

Last Update: 2025-10-28

Remark:

  • Per the sequence of the course outline, this set does not yet cover problems related to exponential functions, inverse functions, and logarithms—these will be included in subsequent sets.
  • 根据课程大纲的内容顺序安排,此部分练习暂未涵盖与指数函数、反函数及对数函数相关的题目 —— 这类题目将在后续练习中纳入。

Derivatives

  • Find \(\dfrac{dy}{dx}\) if

    • \(y = \dfrac{\tan 3x}{(x + 7)^{4}}\)

    • \(x + \tan(xy) = 10\)

    • \(y = \sqrt{\dfrac{x - 1}{x - 3}}\)

    • \(y = \sqrt{x \sin(x\sqrt{1 - x})}\)

    • \(y = \sin(\cos(\tan x))\)

    • \(y = \dfrac{3x^{7/5} + x^{3}\sqrt[3]{4x^{7} + 11 x^{4/7} - 23x + 9}}{6x^{2} + 4}\)

    • \( f(x) = \begin{cases} x^{2} \sin\dfrac{1}{x}, & x > 0, \ 0, & x = 0, \\ \dfrac{1 - \cos x^{2}}{x}, & x < 0. \end{cases} \)

  • Find \(\dfrac{d^{2}y}{dx^{2}}\) if

    • \( y = \left(1 - \sqrt{x}\right)^{-1} \)

    • \( y^{2} = x^{2} + 2x \)

    • \( xy - y^{2} = 0 \)

    • \( y = \tan(x + y) \)

  • Suppose \( f \) is a function with the property that \( \lvert f(x)\rvert \leq x^{2} \) for all \( x \). Show that \( f(0) = 0 \).

  • Let \( f(x) \) defines on \( (0, \infty) \), and for any \( x > 0, y > 0 \), it satisfies \( f(xy) = f(x) + f(y) \). Moreover, \( f’(1) \) exists and equals \( a \). Find \( f’(x) \).

  • Show that \( \dfrac{d}{dx} \left( \dfrac{\sin^{2} x}{\sec x + 1} + \dfrac{\cos^{2} x}{\sec x - 1} \right) = -\cos 2x \).

  • If \( f(x) = \lim_{t \to x} \dfrac{\sec t - \sec x}{t - x} \), find the value of \( f’(\pi/4) \).

  • Prove the product rule for three functions, that is \(\dfrac{d}{dx}(uvw) = \frac{du}{dx}vw+ u\frac{dv}{dx}w + uv\frac{dw}{dx}\).

  • If \( f(x) = \dfrac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x}} \), calculate \( f’(x) \).

  • Is there any special property about the derivative of an odd (or even) differentiable function? Give reasons for your answer.

  • Suppose \( f(x) \) is differentiable. If \( \dfrac{d}{dx}f(x^{2}) = \dfrac{d}{dx}f^{2}(x) \) when \( x = 1 \), show that either \( f’(1) = 0 \) or \( f(1) = 1 \).

  • Let \( f(x) = \begin{cases} \cos \dfrac{\pi x}{2}, & \lvert x \rvert \leq 1, \\ \lvert x - 1\rvert, & \lvert x\rvert > 1.\end{cases}\). Find \( f’(x) \).

  • If \( f(t) = \left( \tan\frac{\pi t}{4} - 1 \right)\left( \tan\frac{\pi t^{2}}{4} - 2 \right)\cdots\left( \tan\frac{\pi t^{100}}{4} - 100 \right) \), find \( f’(1) \).

  • Assume \( y = f(x + y) \), where \( f \) is twice differentiable and \( f’(x) \neq 1 \), find \( \dfrac{d^{2} y}{dx^{2}} \).

  • Suppose \( \lim_{x \to 0} \dfrac{f(x)}{1 - \cos x} = 2 \) and \( f(x) \) has a second derivative at \(x = 0 \), find \( f’‘(0) \).

  • Suppose that \( \lim_{x \to 0} \dfrac{\sin 6x + xf(x)}{x^{3}} = 0 \).

    • Find \( \lim_{x \to 0} \frac{6 + f(x)}{x^{2}} \).

    • Does \( f’(0) \) exist?

    • If \(f(x)\) is continuous, find \(f’(0)\).

    • If \( f(x) \) is twice-differentiable, find \( f’‘(0) \). Can the condition of be weakened and still maintain the same result?


Tangent Line, Normal Line, Differential

  • Assume \(f(x)\) be a differentiable function, \(f(1) = 2\), and satisfy \(\lim_{x \to 0} \dfrac{f(1) - f(1 - x)}{2x} = -1\). Find the equations of the tangent line and normal line to the curve \(y = f(x)\) at the point \((1, 2)\).

  • Find \(\Delta y\) and differential \(dy\) of the functions \(y = x^{2}\) and \(y = \dfrac{x}{1 + x^{2}}\) at \(x = 0\) when \(\Delta x = 0.1\) respectively.

  • Find the tangent line to the curve \( x^{1/2} + y^{1/2} = 1 \) at any point. Find the intersection points \( (x_0, 0) \) and \( (0, y_0) \) of the tangent line with \( x \)-and \( y \)-axis, respectively, then show that \( x_0 + y_0 = 1 \).

  • Find all values of \( c \) such that the parabolas \( y = 4x^{2} \) and \( x = c + 2y^{2} \) intersect each other at right angles.

  • How many lines are tangent to both of the circles \( x^{2} + y^{2} = 4 \) and \( x^{2} + (y - 3)^{2} = 1 \)?

  • Find the tangent line of the curve \( 2x^{2} + x - y^{2} = 2 \) at \( x = 1 \).


Find Limits

  • If \( f \) and \( g \) are differentiable functions with \( f(0) = g(0) = 0 \) and \( g’(0) \neq 0 \), show that \(\lim_{x \to 0} \dfrac{f(x)}{g(x)} = \dfrac{f’(0)}{g’(0)}\).

  • Evaluate \( \lim_{x \to 0} \dfrac{\sin (3+x)^{2} - \sin 9}{x} \).

  • \(\lim_{x \to 0} \dfrac{[\sin x - \sin(\sin x)] \cdot \sin x}{x^{4}}\)

  • Assume that \(f(x)\) is differentiable at \(x = 1\), with \(f(1) = 2\) and \(f’(1) = 3\), find the limit \(\lim_{h \to 0} \dfrac{f(1 + h) \cdot f(1 - 3h) - 4}{h}\).

  • \(\lim_{x \to 3} \dfrac{\sqrt{x^{3} + 9}\sqrt[3]{2x^{2} - 17} - 6}{4 - \sqrt{x^{3} - 23}\sqrt[3]{3x^{2} - 19}}\).

  • \(\lim_{x \to 0} \dfrac{\sqrt{(4 + x)^{3} - 7(4 + x)} - 6}{x}\)

  • Find the values of the constants \( a \) and \( b \) such that \(\lim_{x \to 1} \dfrac{\sqrt[3]{ax + b} - 2}{x - 1} = \dfrac{5}{12}\).

  • If \( f \) is differentiable at \( a \), where \( a > 0 \), evaluate the following limit in terms of \( f’(a) \): \(\lim_{x \to a} \dfrac{f(x) - f(a)}{\sqrt{x} - \sqrt{a}}\)

  • Evaluate \( \lim_{x \to 0} \dfrac{\sin(a + 2x) - 2\sin(a + x) + \sin a}{x^{2}} \)

  • Find the constants \( a \) and \( b \) such that the following limit exists: \(\lim_{x \to 0} \dfrac{1 + a\cos 2x + b\cos 4x}{x^{4}}\). Based on the results, find the limit.

  • \(\lim _{x \to 0} \dfrac{x-\sin x}{3 x^{3}}\)

  • \(\lim _{x \to 0} \dfrac{x-\sin x}{\tan ^{3} x}\)

  • \(\lim _{x \to 0} \dfrac{1}{x}\left(\frac{1}{x}-\cot x\right)\)


\(n\)th Derivatives

  • If \(f(x) = \dfrac{1}{x^{2} + 5x + 6} \), find \( f^{(n)}(x) \).

  • If \(f(x) = \dfrac{1}{1- x - x^{2}} \), find \( f^{(n)}(x) \).

  • If \( f(x) = \dfrac{x^{46} + x^{45} +2}{1+x} \), calculate \( f^{(n)}(3) \).

  • Find the first four derivatives of \(y = \tan x\) and \(y = \sec x\).

  • Find the \(n\)th derivatives of \(y = \sin x\) and \(y = \cos x\).

  • If \(f(x) = \sin^{6} x + \cos^{6} x \), find \( f^{(n)}(x) \).


Differentiability

  • Determine the value of \( a, b \) for which the function \(f(x) = \begin{cases} \sin x, & x < \pi, \\ ax + b, & x \geq \pi. \end{cases} \) is differentiable at \( x = \pi \).

  • Find values for the constants \( a \), \( b \), and \( c \) that will make \( f(x) = \cos x \) and \( g(x) = a + bx + cx^2 \) satisfy \( f(0) = g(0) \), \( f’(0) = g’(0) \), and \( f’‘(0) = g’‘(0) \). For the determined values of \( a \), \( b \), and \( c \) what happens for the third and fourth derivatives of \( f \) and \( g \)?

  • Find values for \( b \) and \( c \) that will make \( f(x) = \sin(x + a) \) and \( g(x) = b\sin x + c\cos x \) satisfy \( f(0) = g(0) \) and \( f’(0) = g’(0) \). For the determined values of \( a \), \( b \), and \( c \) what happens for the higher-order derivatives of \( f \) and \( g \)?

  • Suppose \( f(x) = \begin{cases} \dfrac{a(\cos x - 1)}{\sin^{2} x}, & x < 0, \\ ax^{2} + bx + 1, & x \geq 0 \end{cases} \) is differentiable. Find the values of \(a\) and \(b\).

  • Let \( f(x) = \begin{cases} 3 + x^{2}, & x \leq 0, \\ \dfrac{\sin 3x}{x}, & x > 0. \end{cases}\). Does \( f’(0) \) exist?

  • Prove that the function \(y = f(x)\) is differentiable at \(x = x_0\) if and only if there exists a constant \(A\) such that \[\Delta y = A\Delta x + \varepsilon\Delta \] where \(\varepsilon \to 0\) as \(\Delta x \to 0\).

  • Suppose that \(\varphi(x)\) is continuous at \(x = a\), study the differentiability of \(f(x) = \lvert x - a\rvert \varphi(x)\) at \(x = a\).

  • If \( f(x) = \begin{cases} g(x)\cos\dfrac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases} \), and \( g(0) = g’(0) = 0 \). Is the function \( f(x) \) differentiable at \( x = 0 \)?

  • Determine the value of \( a, b \) if \( f(x) \) is differentiable: \(f(x) = \begin{cases} 2\sin x + a, & x < 0, \\ x^{3} + bx + 3, & x \geq 0.\end{cases}\).

  • Let \( f(x) = \begin{cases} x^{2} \sin \dfrac{1}{x}, & x \neq 0, \\ 0, & x = 0. \end{cases} \)

    • Is \( f(x) \) continuous at \( x = 0 \)?

    • Does \( f’(0) \) exist?

    • Is \( f’(x) \) continuous at \( x = 0 \)?

  • If \( f(0) = 0 \), and \( f’(0) = 1 \).

    • Find the limit \( \lim_{x \to 0} \dfrac{f(1 - \cos x)}{\tan (x^{2})} \);

    • Given function \( g(x) = \begin{cases} x^{2} \sin \dfrac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases} \), is the function \( (f \circ g)(x) \) differentiable at \( x = 0 \)?

  • Let \( f(x) = \begin{cases} x^{\alpha} \cos\frac{1}{x^{\beta}}, & x > 0, \\ 0, & x \leq 0 \end{cases} \) (\(\alpha > 0, \beta > 0\)).

    • What conditions should \(\alpha\) and \(\beta\) satisfy to make \(f(x)\) differentiable at \(x = 0\), and find \(f’(x)\);

    • What conditions should \(\alpha\) and \(\beta\) satisfy to make \(f’(x)\) continuous at \(x = 0\).


Problems that are a little bit more challenging